The Triangle Inequality

If $A B C$ is a triangle, then the following inequalities are true:

$$
A B \leq B C+A C \quad B C \leq A B+A C \quad A C \leq A B+B C
$$

What happens to the points when there is an equality?

Problems

Problem 1. Find the perimeter of an isosceles triangle where two sides are 2 and 11.
Problem 2. Side $A C$ of triangle $A B C$ has length 3.8 , and side $A B$ has length 0.6 . If the length of side $B C$ is an integer, what is this length?

Problem 3. Prove that the length of any side of a triangle is not more than half its perimeter.

Problem 4. It is 6850 miles from Los Angeles to Nanchang, China; 300 miles from Los Angeles to Santa Cruz, CA; 5700 miles from Santa Cruz to Seoul, South Korea; and 850 miles from Seoul to Nanchang, China. How far is it from Los Angeles to Seoul?

Problem 5. Find a point inside a convex quadrilateral such that the sum of the distances from the point to the vertices is minimal.

Problem 6. Point O is given on the plane of square $A B C D$. Prove that the distance from O to one of the vertices of the square is not greater than the sum of the distances from O to the other three vertices.

Problem 7. Prove that the sum of the diagonals of a convex quadrilateral is less than the perimeter but more than half the perimeter.

Problem 8. Prove that $|x+y+z| \leq|x|+|y|+|z|$.
Problem 9. Prove that $|x+y|+|y+z| \leq|x|+2|y|+|z|$.
Problem 10. Prove that $|x|+|y|+|z|+|w| \geq \frac{1}{2}(|x+y|+|y+z|+|z+w|+|w+x|)$.

